More is different.

NEWS

データ内の因果関係を直接的にネットワーク構造として抽出可能なテンソルネットワークをベースとした新しい生成モデルの研究に関するプレスリリースを行いました。

Title
Plastic tensor networks for interpretable generative modeling
Author
Katsuya O. Akamatsu, Kenji Harada, Tsuyoshi Okubo, Naoki Kawashima
Abstract
A structural optimization scheme for a single-layer nonnegative adaptive tensor tree (NATT) that models a target probability distribution is proposed as an alternative paradigm for generative modeling. The NATT scheme, by construction, automatically searches for a tree structure that best fits a given discrete dataset whose features serve as inputs, and has the advantage that it is interpretable as a probabilistic graphical model. We consider the NATT scheme and a recently proposed Born machine ATT optimization scheme and demonstrate their effectiveness on a variety of generative modeling tasks where the objective is to infer the hidden structure of a provided dataset. Our results show that in terms of minimizing the negative log-likelihood, the single-layer scheme has model performance comparable to the Born machine scheme, though not better. The tasks include deducing the structure of binary bitwise operations, learning the internal structure of random Bayesian networks given only visible sites, and a real-world example related to hierarchical clustering where a cladogram is constructed from mitochondrial DNA sequences. In doing so, we also show the importance of the choice of network topology and the versatility of a least-mutual information criterion in selecting a candidate structure for a tensor tree, as well as discuss aspects of these tensor tree generative models including their information content and interpretability.
Comments
21 pages, 17 figures
Citation
Katsuya O. Akamatsu, Kenji Harada, Tsuyoshi Okubo, and Naoki Kawashima, Machine Learning: Science and Technology 7 015014(2026)
DOI
10.1088/2632-2153/ae3048
Code
Nonnegative Adaptive Tensor Tree Modeling

Date
December 15, 2025
Conference
Mini-workshop: Tensor Network algorithms and applications 2025 (Tainan, National Cheng Kung University, Taiwan)
Title
Structure-Optimized Tensor Network Generative Models for Data Distributions

Title
Improving the accuracy of the tree-tensor network approach by optimization of network structure
Author
Toshiya Hikihara, Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, and Tomotoshi Nishino
Abstract
Numerical methods based on tensor networks have been extensively explored in the research of quantum many-body systems in recent years. It has been recognized that the ability of tensor networks to describe a quantum many-body state crucially depends on the spatial structure of the network. In the previous work [T. Hikihara et al., Phys. Rev. Res. 5, 013031 (2023)], we proposed an algorithm based on tree-tensor networks (TTNs) that automatically optimizes the structure of a TTN according to the spatial profile of entanglement in the state of interest. In this paper, we apply the algorithm to the random 𝑋𝑌 -exchange model under random magnetic fields and the Richardson model in order to analyze how the performance of the algorithm depends on the detailed updating schemes of the structural optimization. We then find that for the random 𝑋𝑌 model, on the one hand, the algorithm achieves improved accuracy, and the stochastic algorithm, which selects the local network structure probabilistically, is notably effective. For the Richardson model, on the other hand, the resulting numerical accuracy subtly depends on the initial TTN and the updating schemes. In particular, the algorithm without the stochastic updating scheme certainly improves the accuracy, while the one with the stochastic updates results in poor accuracy due to the effect of randomizing the network structure at the early stage of the calculation. These results indicate that the algorithm successfully improves the accuracy of the numerical calculations for quantum many-body states, while it is essential to appropriately choose the updating scheme as well as the initial TTN structure, depending on the systems treated.
Comments
19 pages, 17 figures, 2 tables
Citation
Toshiya Hikihara, Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, Tomotoshi Nishino, ``Improving the accuracy of the tree-tensor network approach by optimization of network structure'', Phys. Rev. B 112, 134427 (2025)
DOI
10.1103/ljj8-tkpc
Code
Demo code

日本物理学会 2025年年次大会(広島大学)

日程: 2025年9月16日から9月19日

  • 18pPS-90 "グラウバーダイナミクスにおける熱力学不確定性関係" (寺前実, 原田健自)
  • 18pPS-103 "動的制約付きモデルの有限時間における動的相転移の直接的観測" (西川大凱, 原田健自)
  • 18pSL101-13 "MPS表現を用いた確率過程の動的低ランク近似法" (皆川諒, 原田健自)
  • 18pSL101-14 "生成モデリングのためのミニバッチアニーリングを組み込んだ適応的テンソルツリー法" (原田健自, 大久保毅, 川島直輝)

Dates
August 25-29, 2025
Conference
SQAI-NCTS Workshop on Quantum Technologies and Machine Learning (National Taiwan University, Taipei, Taiwan)
Title
Adaptive Tensor Tree Method with Annealing of Mini-batch Samples for Generative Modeling on Quantum Devices
Abstract
We proposed the Adaptive Tensor Tree (ATT) method, which uses the tensor tree network within the Born machine framework to construct a generative model. This method expresses the target distribution function as the squared amplitude of a quantum wave function represented by a tensor tree. The core concept of the ATT method involves dynamically optimizing the tree structure to minimize the bond mutual information. In this presentation, we introduce a new technique that utilizes an annealing process on mini-batch samples to enhance the performance of the ATT method. We will demonstrate the effectiveness of this new ATT approach using various datasets.

テンソルネットワークをベースとした生成モデルの新しい構築法を提案しその有効性を示した研究に関するプレスリリースを行いました。

Title
Tensor tree learns hidden relational structures in data to construct generative models
Author
Kenji Harada, Tsuyoshi Okubo, Naoki Kawashima
Abstract
Based on the tensor tree network with the Born machine framework, we propose a general method for constructing a generative model by expressing the target distribution function as the amplitude of the quantum wave function represented by a tensor tree. The key idea is dynamically optimizing the tree structure that minimizes the bond mutual information. The proposed method offers enhanced performance and uncovers hidden relational structures in the target data. We illustrate potential practical applications with four examples: (i) random patterns, (ii) QMNIST handwritten digits, (iii) Bayesian networks, and (iv) the pattern of stock price fluctuation pattern in S\&P500. In (i) and (ii), the strongly correlated variables were concentrated near the center of the network; in (iii), the causality pattern was identified; and in (iv), a structure corresponding to the eleven sectors emerged.
Comments
10 pages, 3 figures
Citation
Kenji Harada, Tsuyoshi Okubo, and Naoki Kawashima, Machine Learning: Science and Technology 6 025002(2025)
DOI
10.1088/2632-2153/adc2c7
Code
Adaptive Tensor Tree Generative Modeling

日本物理学会 2025年春季大会(オンライン)

日程: 2025年3月18日から3月21日

  • 講演(18pL3-2) "ツリーテンソルネットワークを用いた生成モデルにおけるテンソル・ネットワーク最適化"(共同研究者:大久保毅、川島直輝)

TOPICS

適応テンソル木生成モデリング

生成モデルとして、テンソル木を用いた新しい機械学習手法を提案しています。データに応じて、木構造を自動的に最適化することで、データ構造に適応したモデルを構築し、 データに内在する構造を明らかにすることができます。

To GitHub
テンソルネットワークと量子多体系

多体系の有望な計算手法であるテンソルネットワークについて解説しています。

解説記事PDFへ

数理科学 2022年2月号 No.704:テンソルネットワークの進展(多彩な表現形式が物理をつなぐ).

「物質の中に宇宙が見えてくる」(計算科学の世界)

量子臨界現象研究の面白さを説明しています。

理化学研究所 計算科学研究機構 広報誌「計算科学の世界」 インタビュー記事へ

ベイズ推定を用いたスケーリング解析ツール

臨界現象のスケーリング解析にベイズ推定の手法を導入した新しいアルゴリズムの実装。

デモページへ 解説ページへ
オンラインで学ぶモンテカルロ法

モンテカルロ法(マルコフ過程を用いた手法も含む)の基本的な事柄についての解説。

解説ページへ

ACTIVITY

産学連携プロジェクト「モビリティ基盤数理」
学術変革領域(A)極限宇宙の物理法則を創る-量子情報で拓く時空と物質の新しいパラダイム

ABOUT

Kenji Harada

原田健自 ( Kenji Harada )
京都大学大学院情報学研究科 助教
harada.kenji.8e@kyoto-u.ac.jp
京都市左京区吉田本町 京都大学吉田キャンパス 総合研究8号館203号室 Map (No.59)

統計物理学と情報論的視点を融合した最先端の計算手法とスーパーコンピュータのパワーを組み合わせ、相互作用する多体系と情報科学における未解決問題に先端的に取り組んでいます。

LINKS